當前位置:首頁 > 教育 > 正文

中考講義:2個必考專題

目錄

一、二次函數圖像與系數的關系

方法技巧

1.熟練掌握基知識是解決此型題的關,對于已加二次函的圖象,讨論與系教a,b,c相關的表達式的特号的目,一定熱态的幾何又:決定物線開口方向及大小,a,b共同決定物的對稱軸,C決定物線與y軸交,點的位置;判斷判别式符号隻需要看函散圖象與x軸交點的個數即可;2a和b的關系一般是用二幅畫數的對稱軸來進行判斷。

2.二次函數合題由于知識覆蓋面廣,方法靈活多樣,題目類型較多,因此很多省市在中考中會把它作為壓軸題,全面考查學生的思能力和數學素養。其中常考題型有求解公式問題、面積問題、線段(周長)問題、角度問題、動點問題、存在性問題等,學生前先應當熱二次函的相關概念及性質,其次要能靈活運用各種基本圖形和基本模型,解題方法(如:求面積的鉛法、求角相等的對稱點法等)二次函綜合題對學生要求很高,能否确地解答決定了中考盤學成的好壞。

二、二次函數中的面積問題

根據面積求坐标問題,一般說涉及的圖形主要是三角形和四邊形,并且通常隻求一個未知點的坐标、常規的解題思路是:設出這個未知點的坐标,示出這個三角形或四邊形的面積,然後列方程求解遇到此類型問題,主要的難點是如何表示出三角形成四邊形的面積下面将以三角形為例分類進行說明(四邊形中隻要有三個定點,則可以轉化為三角形的問題。

三、二次函數中的角度問題

通過角相等求坐标問題是二次數中常見的類型,根據目條件逃捏造當的方法去構造角相等是解5決此類問題的關大緻可以分成兩大類:(1)一隻角一隻角;(2)兩個都為動角。但是兩動角相等問題,易3轉化為等腰三角形的存在性問題,故不在本文中讨論,對于一隻角一個角求點的坐标問題,這個點一般都在3一個已知的二次函數圖象上運動。

你可能想看:

有話要說...

取消
掃碼支持 支付碼