小學五年級奧數題
一、工程問題
1.甲乙兩個水管單獨開,注滿一池水,分别需要20小時,16小時.丙水管單獨開,排一池水要10小時,若水池沒水,同時打開甲乙兩水管,5小時後,再打開排水管丙,問水池注滿還需要多少小時?
2.修一條水渠,單獨修,甲隊需要20天完成,乙隊需要30天完成。如果兩隊合作,由于彼此施工有影響,他們的工作效率就要降低,甲隊的工作效率是原來的五分之四,乙隊工作效率隻有原來的十分之九。現在計劃16天修完這條水渠,且要求兩隊合作的天數盡可能少,那麼兩隊要合作幾天?
3.一件工作,甲、乙合做需4小時完成,乙、丙合做需5小時完成。現在先請甲、丙合做2小時後,餘下的乙還需做6小時完成。乙單獨做完這件工作要多少小時?
4.一項工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那麼恰好用整數天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那麼完工時間要比前一種多半天。已知乙單獨做這項工程需17天完成,甲單獨做這項工程要多少天完成?
5.師徒倆人加工同樣多的零件。當師傅完成了1/2時,徒弟完成了120個。當師傅完成了任務時,徒弟完成了4/5這批零件共有多少個?
6.一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?
7.一個池上裝有3根水管。甲管為進水管,乙管為出水管,20分鐘可将滿池水放完,丙管也是出水管,30分鐘可将滿池水放完。現在先打開甲管,當水池水剛溢出時,打開乙,丙兩管用了18分鐘放完,當打開甲管注滿水是,再打開乙管,而不開丙管,多少分鐘将水放完?
8.某工程隊需要在規定日期内完成,若由甲隊去做,恰好如期完成,若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,問規定日期為幾天?
9.兩根同樣長的蠟燭,點完一根粗蠟燭要2小時,而點完一根細蠟燭要1小時,一天晚上停電,小芳同時點燃了這兩根蠟燭看書,若幹分鐘後來點了,小芳将兩支蠟燭同時熄滅,發現粗蠟燭的長是細蠟燭的2倍,問:停電多少分鐘?
二.雞兔同籠問題
1.雞與兔共100隻,雞的腿數比兔的腿數少28條,,問雞與兔各有幾隻?
三.數字數位問題
1.把1至2005這2005個自然數依次寫下來得到一個多位數123456789.....2005,這個多位數除以9餘數是多少?
2.A和B是小于100的兩個非零的不同自然數。求A+B分之A-B的最小值...
3.已知A.B.C都是非0自然數,A/2 + B/4 + C/16的近似值市6.4,那麼它的準确值是多少?
4.一個三位數的各位數字 之和是17.其中十位數字比個位數字大1.如果把這個三位數的百位數字與個位數字對調,得到一個新的三位數,則新的三位數比原三位數大198,求原數.
5.一個兩位數,在它的前面寫上3,所組成的三位數比原兩位數的7倍多24,求原來的兩位數.
6.把一個兩位數的個位數字與十位數字交換後得到一個新數,它與原數相加,和恰好是某自然數的平方,這個和是多少?
7.一個六位數的末位數字是2,如果把2移到首位,原數就是新數的3倍,求原數.
8.有一個四位數,個位數字與百位數字的和是12,十位數字與千位數字的和是9,如果個位數字與百位數字互換,千位數字與十位數字互換,新數就比原數增加2376,求原數.
9.有一個兩位數,如果用它去除以個位數字,商為9餘數為6,如果用這個兩位數除以個位數字與十位數字之和,則商為5餘數為3,求這個兩位數.
10.如果現在是上午的10點21分,那麼在經過28799...99(一共有20個9)分鐘之後的時間将是幾點幾分?
四.排列組合問題
1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人都相鄰的排法有( )
A 768種 B 32種 C 24種 D 2的10次方中
2 若把英語單詞hello的字母寫錯了,則可能出現的錯誤共有 ( )
A 119種 B 36種 C 59種 D 48種
五.容斥原理問題
1.有100種赤貧.其中含鈣的有68種,含鐵的有43種,那麼,同時含鈣和鐵的食品種類的最大值和最小值分别是( )
A 43,25 B 32,25 C32,15 D 43,11
2.在多元智能大賽的決賽中隻有三道題.已知:(1)某校25名學生參加競賽,每個學生至少解出一道題;(2)在所有沒有解出第一題的學生中,解出第二題的人數是解出第三題的人數的2倍:(3)隻解出第一題的學生比餘下的學生中解出第一題的人數多1人;(4)隻解出一道題的學生中,有一半沒有解出第一題,那麼隻解出第二題的學生人數是( )
A,5 B,6 C,7 D,8
3.一次考試共有5道試題。做對第1、2、3、、4、5題的分别占參加考試人數的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那麼這次考試的合格率至少是多少?
六.抽屜原理、奇偶性問題
1.一隻布袋中裝有大小相同但顔色不同的手套,顔色有黑、紅、藍、黃四種,問最少要摸出幾隻手套才能保證有3副同色的?
2.有四種顔色的積木若幹,每人可任取1-2件,至少有幾個人去取,才能保證有3人能取得完全一樣?
3.某盒子内裝50隻球,其中10隻是紅色,10隻是綠色,10隻是黃色,10隻是藍色,其餘是白球和黑球,為了确保取出的球中至少包含有7隻同色的球,問:最少必須從袋中取出多少隻球?
4.地上有四堆石子,石子數分别是1、9、15、31如果每次從其中的三堆同時各取出1個,然後都放入第四堆中,那麼,能否經過若幹次操作,使得這四堆石子的個數都相同?(如果能請說明具體操作,不能則要說明理由)
七.路程問題
1.狗跑5步的時間馬跑3步,馬跑4步的距離狗跑7步,現在狗已跑出30米,馬開始追它。問:狗再跑多遠,馬可以追上它?
2.甲乙輛車同時從a b兩地相對開出,幾小時後再距中點40千米處相遇?已知,甲車行完全程要8小時,乙車行完全程要10小時,求a b 兩地相距多少千米?
3.在一個600米的環形跑道上,兄弟兩人同時從同一個起點按順時針方向跑步,兩人每隔12分鐘相遇一次,若兩個人速度不變,還是在原來出發點同時出發,哥哥改為按逆時針方向跑,則兩人每隔4分鐘相遇一次,兩人跑一圈各要多少分鐘?
4.慢車車長125米,車速每秒行17米,快車車長140米,車速每秒行22米,慢車在前面行駛,快車從後面追上來,那麼,快車從追上慢車的車尾到完全超過慢車需要多少時間?
5.在300米長的環形跑道上,甲乙兩個人同時同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,兩人起跑後的第一次相遇在起跑線前幾米?
6.一個人在鐵道邊,聽見遠處傳來的火車汽笛聲後,在經過57秒火車經過她前面,已知火車鳴笛時離他1360米,(軌道是直的),聲音每秒傳340米,求火車的速度(得出保留整數)
7.獵犬發現在離它10米遠的前方有一隻奔跑着的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動作快,獵犬跑2步的時間,兔子卻能跑3步,問獵犬至少跑多少米才能追上兔子。
8. AB兩地,甲乙兩人騎自行車行完全程所用時間的比是4:5,如果甲乙二人分别同時從AB兩地相對行使,40分鐘後兩人相遇,相遇後各自繼續前行,這樣,乙到達A地比甲到達B地要晚多少分鐘?
9.甲乙兩車同時從AB兩地相對開出。第一次相遇後兩車繼續行駛,各自到達對方出發點後立即返回。第二次相遇時離B地的距離是AB全程的1/5。已知甲車在第一次相遇時行了120千米。AB兩地相距多少千米?
10.一船以同樣速度往返于兩地之間,它順流需要6小時;逆流8小時。如果水流速度是每小時2千米,求兩地間的距離?
11.快車和慢車同時從甲乙兩地相對開出,快車每小時行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時,求甲乙兩地的路程。
12.小華從甲地到乙地,3分之1騎車,3分之2乘車;從乙地返回甲地,5分之3騎車,5分之2乘車,結果慢了半小時.已知,騎車每小時12千米,乘車每小時30千米,問:甲乙兩地相距多少千米?
八.比例問題
1.甲乙兩人在河邊釣魚,甲釣了三條,乙釣了兩條,正準備吃,有一個人請求跟他們一起吃,于是三人将五條魚平分了,為了表示感謝,過路人留下10元,甲、乙怎麼分?
2.一種商品,今年的成本比去年增加了10分之1,但仍保持原售價,因此,每份利潤下降了5分之2,那麼,今年這種商品的成本占售價的幾分之幾?
3.甲乙兩車分别從A.B兩地出發,相向而行,出發時,甲.乙的速度比是5:4,相遇後,甲的速度減少20%,乙的速度增加20%,這樣,當甲到達B地時,乙離A地還有10千米,那麼A.B兩地相距多少千米?
4.一個圓柱的底面周長減少25%,要使體積增加1/3,現在的高和原來的高度比是多少?
5、某市舉行小學數學競賽,結果不低于80分的人數比80分以下的人數的4倍還多2人,及格的人數比不低于80分的人數多22人,恰是不及格人數的6倍,求參賽的總人數?
6、有7個數,它們的平均數是18。去掉一個數後,剩下6個數的平均數是19;再去掉一個數後,剩下的5個數的平均數是20。求去掉的兩個數的乘積。
7、小明參加了六次測驗,第三、第四次的平均分比前兩次的平均分多2分,比後兩次的平均分少2分。如果後三次平均分比前三次平均分多3分,那麼第四次比第三次多得幾分?
7、某工車間共有77個工人,已知每天每個工人平均可加工甲種部件5個,或者乙種部件4個,或丙種部件3個。但加工3個甲種部件,一個乙種部件和9個丙種部件才恰好配成一套。問應安排甲、乙、丙種部件工人各多少人時,才能使生産出來的甲、乙、丙三種部件恰好都配套?
8、哥哥現在的年齡是弟弟當年年齡的三倍,哥哥當年的年齡與弟弟現在的年齡相同,哥哥與弟弟現在的年齡和為30歲,問哥哥、弟弟現在多少歲?
參考答案
一、工程問題
1、解:1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小時後進水量
1-45/80=35/80表示還要的進水量
35/80÷(9/80-1/10)=35表示還要35小時注滿
答:5小時後還要35小時就能将水池注滿。
2、解:由題意得,甲的工效為1/20,乙的工效為1/30,甲乙的合作工效為1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因為,要求“兩隊合作的天數盡可能少”,所以應該讓做的快的甲多做,16天内實在來不及的才應該讓甲乙合作完成。隻有這樣才能“兩隊合作的天數盡可能少”。
設合作時間為x天,則甲獨做時間為(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3、由題意知,1/4表示甲乙合作1小時的工作量,1/5表示乙丙合作1小時的工作量
(1/4+1/5)×2=9/10表示甲做了2小時、乙做了4小時、丙做了2小時的工作量。
根據“甲、丙合做2小時後,餘下的乙還需做6小時完成”可知甲做2小時、乙做6小時、丙做2小時一共的工作量為1。
所以1-9/10=1/10表示乙做6-4=2小時的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小時表示乙單獨完成需要20小時。
答:乙單獨完成需要20小時。
4、解:由題意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最後結束必須如上所示,否則第二種做法就不比第一種多0.5天)
1/甲=1/乙+1/甲×0.5(因為前面的工作量都相等)
得到1/甲=1/乙×2
又因為1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5、答案為300個
120÷(4/5÷2)=300個
可以這樣想:師傅第一次完成了1/2,第二次也是1/2,兩次一共全部完工,那麼徒弟第二次後共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,剛好是120個。
6、答案是15棵
算式:1÷(1/6-1/10)=15棵
7、答案45分鐘。
1÷(1/20+1/30)=12 表示乙丙合作将滿池水放完需要的分鐘數。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完後,還多放了6分鐘的水,也就是甲18分鐘進的水。
1/2÷18=1/36 表示甲每分鐘進水
最後就是1÷(1/20-1/36)=45分鐘。
8、答案為6天
解:由“若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作時間比是2:3
時間比的差是1份
實際時間的差是3天
所以3÷(3-2)×2=6天,就是甲的時間,也就是規定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9、答案為40分鐘。
解:設停電了x分鐘
根據題意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40
二.雞兔同籠問題
1、解:4*100=400,400-0=400 假設都是兔子,一共有400隻兔子的腳,那麼雞的腳為0隻,雞的腳比兔子的腳少400隻。
400-28=372 實際雞的腳數比兔子的腳數隻少28隻,相差372隻,這是為什麼?
4+2=6 這是因為隻要将一隻兔子換成一隻雞,兔子的總腳數就會減少4隻(從400隻變為396隻),雞的總腳數就會增加2隻(從0隻到2隻),它們的相差數就會少4+2=6隻(也就是原來的相差數是400-0=400,現在的相差數為396-2=394,相差數少了400-394=6)
372÷6=62 表示雞的隻數,也就是說因為假設中的100隻兔子中有62隻改為了雞,所以腳的相差數從400改為28,一共改了372隻
100-62=38表示兔的隻數
三.數字數位問題
1、解:首先研究能被9整除的數的特點:如果各個數位上的數字之和能被9整除,那麼這個數也能被9整除;如果各個位數字之和不能被9整除,那麼得的餘數就是這個數除以9得的餘數。
解題:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次類推:1~1999這些數的個位上的數字之和可以被9整除
10~19,20~29……90~99這些數中十位上的數字都出現了10次,那麼十位上的數字之和就是10+20+30+……+90=450 它有能被9整除
同樣的道理,100~900 百位上的數字之和為4500 同樣被9整除
也就是說1~999這些連續的自然數的各個位上的數字之和可以被9整除;
同樣的道理:1000~1999這些連續的自然數中百位、十位、個位 上的數字之和可以被9整除(這裡千位上的“1”還沒考慮,同時這裡我們少200020012002200320042005
從1000~1999千位上一共999個“1”的和是999,也能整除;
200020012002200320042005的各位數字之和是27,也剛好整除。
最後答案為餘數為0。
2、解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不會變了,隻需求後面的最小值,此時 (A-B)/(A+B) 最大。
對于 B / (A+B) 取最小時,(A+B)/B 取最大,
問題轉化為求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100
3、解:因為A/2 + B/4 + C/16=8A+4B+C/16≈6.4,
所以8A+4B+C≈102.4,由于A、B、C為非0自然數,因此8A+4B+C為一個整數,可能是102,也有可能是103。
當是102時,102/16=6.375
當是103時,103/16=6.4375
4、解:設原數個位為a,則十位為a+1,百位為16-2a
根據題意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,則a+1=7 16-2a=4
答:原數為476。
5、解:設該兩位數為a,則該三位數為300+a
7a+24=300+a
a=24
答:該兩位數為24。
6、解:設原兩位數為10a+b,則新兩位數為10b+a
它們的和就是10a+b+10b+a=11(a+b)
因為這個和是一個平方數,可以确定a+b=11
因此這個和就是11×11=121
答:它們的和為121。
7、解:設原六位數為abcde2,則新六位數為2abcde(字母上無法加橫線,請将整個看成一個六位數)
再設abcde(五位數)為x,則原六位數就是10x+2,新六位數就是200000+x
根據題意得,(200000+x)×3=10x+2
解得x=85714
所以原數就是857142
8、答案為3963
解:設原四位數為abcd,則新數為cdab,且d+b=12,a+c=9
根據“新數就比原數增加2376”可知abcd+2376=cdab,列豎式便于觀察
abcd
2376
cdab
根據d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再觀察豎式中的個位,便可以知道隻有當d=3,b=9;或d=8,b=4時成立。
先取d=3,b=9代入豎式的百位,可以确定十位上有進位。
根據a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再觀察豎式中的十位,便可知隻有當c=6,a=3時成立。
再代入豎式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入豎式的十位,無法找到豎式的十位合适的數,所以不成立。
9、解:設這個兩位數為ab
10a+b=9b+6
10a+b=5(a+b)+3
化簡得到一樣:5a+4b=3
由于a、b均為一位整數
得到a=3或7,b=3或8
原數為33或78均可以
10、解:(28799……9(20個9)+1)/60/24整除,表示正好過了整數天,時間仍然還是10:21,因為事先計算時加了1分鐘,所以現在時間是10:20
四.排列組合問題
1、解:根據乘法原理,分兩步:
第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會産生5個5個重複,因此實際排法隻有120÷5=24種。
第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種
綜合兩步,就有24×32=768種。
2、解:5全排列5*4*3*2*1=120
有兩個l所以120/2=60
原來有一種正确的所以60-1=59
五.容斥原理問題
1、解:根據容斥原理最小值68+43-100=11
最大值就是含鐵的有43種
2、解:根據“每個人至少答出三題中的一道題”可知答題情況分為7類:隻答第1題,隻答第2題,隻答第3題,隻答第1、2題,隻答第1、3題,隻答2、3題,答1、2、3題。
分别設各類的人數為a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然後将④⑤⑥代入①中,整理得到
a2×4+a3=26
由于a2、a3均表示人數,可以求出它們的整數解:
當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22
又根據a23=a2-a3×2……⑤可知:a2>a3
因此,符合條件的隻有a2=6,a3=2。
然後可以推出a1=8,a12+a13+a123=7,a23=2,總人數=8+6+2+7+2=25,檢驗所有條件均符。
故隻解出第二題的學生人數a2=6人。
3、答案:及格率至少為71%。
假設一共有100人考試
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5題中有1題做錯的最多人數)
87÷3=29(表示5題中有3題做錯的最多人數,即不及格的人數最多為29人)
100-29=71(及格的最少人數,其實都是全對的)
及格率至少為71%
六.抽屜原理、奇偶性問題
1、解:可以把四種不同的顔色看成是4個抽屜,把手套看成是元素,要保證有一副同色的,就是1個抽屜裡至少有2隻手套,根據抽屜原理,最少要摸出5隻手套。這時拿出1副同色的後4個抽屜中還剩3隻手套。再根據抽屜原理,隻要再摸出2隻手套,又能保證有一副手套是同色的,以此類推。
把四種顔色看做4個抽屜,要保證有3副同色的,先考慮保證有1副就要摸出5隻手套。這時拿出1副同色的後,4個抽屜中還剩下3隻手套。根據抽屜原理,隻要再摸出2隻手套,又能保證有1副是同色的。以此類推,要保證有3副同色的,共摸出的手套有:5+2+2=9(隻)
答:最少要摸出9隻手套,才能保證有3副同色的。
2、解:每人取1件時有4種不同的取法,每人取2件時,有6種不同的取法.
當有11人時,能保證至少有2人取得完全一樣:
當有21人時,才能保證到少有3人取得完全一樣.
3、解:需要分情況讨論,因為無法确定其中黑球與白球的個數。
當黑球或白球其中沒有大于或等于7個的,那麼就是:
6*4+10+1=35(個)
如果黑球或白球其中有等于7個的,那麼就是:
6*5+3+1=34(個)
如果黑球或白球其中有等于8個的,那麼就是:
6*5+2+1=33
如果黑球或白球其中有等于9個的,那麼就是:
6*5+1+1=32
4、解:不可能。
因為總數為1+9+15+31=56
56/4=14。14是一個偶數,而原來1、9、15、31都是奇數,取出1個和放入3個也都是奇數,奇數加減若幹次奇數後,結果一定還是奇數,不可能得到偶數(14個)。
七.路程問題
1、解:根據“馬跑4步的距離狗跑7步”,可以設馬每步長為7x米,則狗每步長為4x米。
根據“狗跑5步的時間馬跑3步”,可知同一時間馬跑3*7x米=21x米,則狗跑5*4x=20米。
可以得出馬與狗的速度比是21x:20x=21:20
根據“現在狗已跑出30米”,可以知道狗與馬相差的路程是30米,他們相差的份數是21-20=1,現在求馬的21份是多少路程,就是 30÷(21-20)×21=630米
2、解:由“甲車行完全程要8小時,乙車行完全程要10小時”可知,相遇時甲行了10份,乙行了8份(總路程為18份),兩車相差2份。又因為兩車在中點40千米處相遇,說明兩車的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
3、解:600÷12=50,表示哥哥、弟弟的速度差
600÷4=150,表示哥哥、弟弟的速度和
(50+150)÷2=100,表示較快的速度,方法是求和差問題中的較大數
(150-50)/2=50,表示較慢的速度,方法是求和差問題中的較小數
600÷100=6分鐘,表示跑的快者用的時間
600/50=12分鐘,表示跑得慢者用的時間
4、解:算式是(140+125)÷(22-17)=53秒
可以這樣理解:“快車從追上慢車的車尾到完全超過慢車”就是快車車尾上的點追及慢車車頭的點,因此追及的路程應該為兩個車長的和。
5、解:300÷(5-4.4)=500秒,表示追及時間
5×500=2500米,表示甲追到乙時所行的路程
2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來起跑線的前方100米處相遇。
6、解:算式:1360÷(1360÷340+57)≈22米/秒
關鍵理解:人在聽到聲音後57秒才車到,說明人聽到聲音時車已經從發聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7、答案是獵犬至少跑60米才能追上。
解:由“獵犬跑5步的路程,兔子要跑9步”可知當獵犬每步a米,則兔子每步5/9米。由“獵犬跑2步的時間,兔子卻能跑3步”可知同一時間,獵犬跑2a米,兔子可跑5/9a*3=5/3a米。從而可知獵犬與兔子的速度比是2a:5/3a=6:5,也就是說當獵犬跑60米時候,兔子跑50米,本來相差的10米剛好追完
8、解:設全程為1,甲的速度為x乙的速度為y
列式40x+40y=1
x:y=5:4
得x=1/72 y=1/90
走完全程甲需72分鐘,乙需90分鐘
故得解答案:18分
9、解:通過畫線段圖可知,兩個人第一次相遇時一共行了1個AB的路程,從開始到第二次相遇,一共又行了3個AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
10、解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示總路程
11、解:相遇是已行了全程的七分之四表示甲乙的速度比是4:3
時間比為3:4
所以快車行全程的時間為8/4*3=6小時
6*33=198千米
12、解:把路程看成1,得到時間系數
去時時間系數:1/3÷12+2/3÷30
返回時間系數:3/5÷12+2/5÷30
兩者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相當于1/2小時
去時時間:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
八.比例問題
1、解:“三人将五條魚平分,客人拿出10元”,可以理解為五條魚總價值為30元,那麼每條魚價值6元。
又因為“甲釣了三條”,相當于甲吃之前已經出資3*6=18元,“乙釣了兩條”,相當于乙吃之前已經出資2*6=12元。
而甲乙兩人吃了的價值都是10元,所以
甲還可以收回18-10=8元
乙還可以收回12-10=2元
剛好就是客人出的錢。
2、解:最好畫線段圖思考:把去年原來成本看成20份,利潤看成5份,則今年的成本提高1/10,就是22份,利潤下降了2/5,今年的利潤隻有3份。增加的成本2份剛好是下降利潤的2份。售價都是25份。所以,今年的成本占售價的22/25。
3、解:原來甲.乙的速度比是5:4
現在的甲:5×(1-20%)=4
現在的乙:4×(1+20%)4.8
甲到B後,乙離A還有:5-4.8=0.2
總路程:10÷0.2×(4+5)=450千米
4、答案為64:27
解:根據“周長減少25%”,可知周長是原來的3/4,那麼半徑也是原來的3/4,則面積是原來的9/16。
根據“體積增加1/3”,可知體積是原來的4/3。
體積÷底面積=高
現在的高是4/3÷9/16=64/27,也就是說現在的高是原來的高的64/27
或者現在的高:原來的高=64/27:1=64:27
5、解:設不低于80分的為A人,則80分以下的人數是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,則A=314,80分以下的人數是(A-2)/4,也即是78,參賽的總人數314+78=392
6、解: 7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的兩個數是12和14它們的乘積是12*14=168
7、解:第三、四次的成績和比前兩次的成績和多4分,比後兩次的成績和少4分,推知後兩次的成績和比前兩次的成績和多8分。因為後三次的成績和比前三次的成績和多9分,所以第四次比第三次多9-8=1(分)。
8、算式:這道題可以用方程解:解:設加工後乙種部件有x個。
3/5X + 1/4X + 9/3X=77
x=20
甲:0.6×20=12(人) 乙: 0.25×20=5(人) 丙: 3×20==60(人)
答:甲12人,乙5人,丙60人。
9、算式:這道題可以用方程解:解:設哥哥現在的年齡為x歲。
x-(30-x)=(30-x)-x/3
x=18
弟弟30-18=12(歲)
答:哥哥18歲,弟弟12歲。
有話要說...