記憶力差是一種怎麼樣的體驗?
“剛背完的單詞立馬就忘”
“做過的題看着眼熟,
就是想不起來答案”
“公式定理背了八百遍還是記不住”
那并不是因為笨,很可能是記憶方法太落後!
本文主要介紹
适合理科尤其是數學的19種記憶法+适合文科的16種背誦法。方法都是通用的,希望每位同學能夠挑選自己适合的掌握,形成自己的一套專屬記憶法!
适合理科的19種高效記憶法
1
口訣記憶法
初中數學中,有些方法如果能編成順口溜或歌訣,可以幫助記憶。 如:
2
形象記憶法
有些知識,如果能借助圖形,可以加強記憶。例如利用二次函數的圖象,可幫助記憶抛物線的性質——開口、頂點、對稱軸和極值。
3
表格記憶法
有些知識借助表格也能幫助記憶。例如,0°、30°、45°、60°、90°等特殊角的三角函數值;各個圖形的面積公式,要識記質數、質因數、互質數這三個概念的區别等。這種記憶法在複習中尤其應該提倡。
4
聯想記憶法
對新知識可以聯想已牢固記憶的舊知識,用類比的方法來幫助記憶。
5
分類記憶法
遇到數學公式較多,一時難于記憶時,可以将這些公式适當分組。
比如,學完計量單位後,我們就可以把學過的所有内容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。這樣歸類的學習方法,能夠把紛纭複雜的事物系統化、條理化,易于記憶。
6
“四多”記憶法
要使記憶對象經久不忘,一般來說要經過多次反複的感知。
“四多”即多看、多聽、多讀、多寫。特别是邊讀邊默寫,記憶效果更佳。例如,甲對某組公式單純抄寫四次,乙對同組公式抄寫兩次然後默寫(默寫不出時可看書)兩次,實驗證明,乙的記憶效果優于甲。
7
靜心記憶法
記憶要從平心靜氣開始,根據一定的記憶目标,找出适合于自己學習特點的記憶方法。比如記憶環境的選擇就因人而異。有人覺得早晨記憶力好;有人感到晚上記憶力好;有人習慣于邊走邊讀邊記;有人則要在安靜的環境下記憶才好等等。不管選擇何種方式記憶,都必須保持“心靜”。心靜才能集中注意力記憶,心靜才能形成記憶的優勢興奮中心,記憶需從靜始!
8
首次記憶法
首次記憶有四種方式:
(1)背誦記憶法。将運算過程和結果在理解的基礎上背誦記熟,這種記憶稱為背誦記憶。比如,加法與乘法法則,兩數和、差的平方、立方的展開式等記憶都是背誦記憶。
(2)模型記憶法。有許多數學知識有它具體的模型,我們可以通過模型來記憶。有些數學知識可有規律的列在圖表内,借助于圖表來記憶,這些記憶都稱模型記憶。
例如,要記住特角30°,45°,60°的三角函數值,可以通過兩模型來記憶。
(3)
差别記憶法。有些數學知識之間有許多共性,少數異性。要記住它們,隻需記住一個基本的和差異特征,就可以記住其它的了,這種記憶稱為差别記憶。
例如,平行四邊形、菱形、矩形和正方形的定義,我們隻要記住平行四邊形的定義和它們之間的差異特征就可以了。
(4
)推理記憶法。許多數學知識之間邏輯關系比較明顯,要記住這些知識,隻需記憶一個,而其餘可利用推理得到,這種記憶稱為推理記憶。
例如,平行四邊形的性質,我們隻要記住它的定義,由定義推得它的任一對角線把它分成兩個全等三角形,繼而又推得它的對邊相等,對角相等,相鄰角互補,兩條對角線互相平分等性質。
9
重複記憶法
重複記憶有三種方式。
(1)标志記憶法。在學習某一章節知識時,先看一遍,對于重要部分用彩筆在下面畫上波浪線,在重複記憶時,就不需要将整個章節的内容從頭到尾逐字逐句的看了,隻要看到波浪線,在它的啟示下就能重複記憶本章節主要内容,這種記憶稱為标志記憶。
(2)回想記憶法。在重複記憶某一章節的知識時,不看具體内容,而是通過大腦回想達到重複記憶的目的,這種記憶稱為回想記憶,在實際記憶時,回想記憶法與标志記憶法是配合使用的。
(3)使用記憶法。在解數學題時,必須用到已記住的知識,使用一次有關知識就被重複記憶一次,這種記憶稱為使用記憶。使用記憶法是積極的記憶,效果好。
10
理解記憶法
知識的理解是産生記憶的根本條件,對于數學知識特别要通過理解、掌握它的邏輯結構體系進行記憶。由于數學是建立在邏輯學基礎上的一門學科,它的概念、法則的建立,定理的論證,公式的推導,無不處于一定的邏輯體系之中,因此,對于數學知識的理解記憶,主要在于弄清數學知識的邏輯聯系,把握它的來龍去脈,隻有理解了的東西才能牢固記住它。因此,數學中的定理、公式、法則,都必須弄通它的來龍去脈,弄懂它們的證明過程,以便牢固記住它們。
用好這一方法的關鍵,在于學習要注意理解,這一方法,不僅對于數學學習,就是對于其它學科的學習都有着廣泛的應用。應十分重視。
11
系統記憶法
有位青年總結自己的經驗得出:“總結+消化=記憶”。這正是根據系統記憶法的思想總結出來的。因為系統記憶法,就是按照數學知識的系統性,把知識進行恰當的比較、分類、條理化,順理成章,編織成網,這樣記住的就不是零星的知識而是一串,它往往采取列表比較的形式,或抓住主線、内在聯系把重要概念、公式和章節聯系串為一個整體。
在學習中,應用系統記憶法來小結,總結整理自己的知識系統,對掌握知識大有裨益。
12
簡化記憶法
根據記憶目标的特點或自身規律,使用适當方法将記憶目标簡化,是減輕記憶負擔、提高記憶效率的有效方法。
(1)目标簡化。篩選出記憶目标中具有代表性的部分,用以取代記憶目标的整體,是簡化記憶的又一常用方法。三角函數的積化和差與和差化積公式各有四個,可利用兩角和與差的正餘弦公式,由一組中的四個導出另一組中的四個,因而可着重記憶積化的差公式即可。
(2)取名簡化。給記憶目标取一個形象的名字,可顧名釋義,記起這個記憶目标。例如,對不等式|a|-|b|≤|a±b|≤|a|+|b|,針對其特征,設某三角形的三邊之長分别為|a|、|b|、|a±b|,由于三角形的三邊關系(兩邊之和大于第三邊,兩邊之差小于第三邊)滿足這個不等式,故給其取名為“三角形不等式”。
(3)轉換簡化。把複雜難記的記憶目标甲,轉換為簡單易記或早已熟記的事物乙,把乙連同甲與乙相互轉換的方法,作為新的記憶目标記憶。當需用甲時,大腦會同時再現出甲、乙及甲與乙的轉換方法,此時甲往往是模糊的,而乙卻是清晰的,轉換乙便得到了清晰的甲,如萬能公式,可利用圖所示的Rt△的邊角關系記憶:
13
聯合記憶法
把具有相關意義的兩個或兩個以上的記憶目标,聯合在一起記憶,往往比孤立地記憶其中一個還要容易,這是因為,利用它們的相關意義由此及彼地聯想,經過相互印證、相互補充,必然能收到事半功倍的記記效果。
(1)近似聯合。把音、義、式、形等方面具有一定相似之處的幾個記憶目标聯合在一起。如把同次根式與同類根式的定義聯合在一起;把全等三角形與相似三角形的判定定理聯合在一起;把梯形、平行四邊形、菱形面積公式聯合在一起。
(2)反正聯合。把具有某種相反意義的兩個記憶目标聯合在一起。如把三垂線定理與其逆定理聯合在一起等。
(3)遞進聯合。把具有從屬關系的幾個概念,或具有因果關系的幾個定理(公式)連同它們的先後順序聯合在一起記憶,不僅可由前者推出後者,而且也可由後者感知前者。
14
興趣記憶法
有意義的和感興趣的事物容易記住,這是每個有記憶力的人的共同感受,把平淡、枯燥的記憶目标意趣化,例如,利用諧音或者生動形象的比喻等,都是強化記憶的有效方法。
15
對比記憶法
是将一些相似的數學材料,列出它們的相同或相異點來比較的記憶方法。例如平面與空間圖形的性質,等差數列與等比數列的特征,微分與積分定義、公式、微分方程所描述的不同的物理模型、相似或相互對立的一些概念等等,應用對比記憶法都可收到良好的記憶效果。
16
邏輯記憶法
按照知識的順序、層次、系統列出某單元知識結構圖,根據知識結構圖逐步分層記憶,可提高記憶的效率。例如:三角形的各種面積公式可按下面的邏輯順序記憶:
17
交替記憶法
即是把不同的學習内容、不同的學科互相交替記憶;把學習和休息、學習和體育鍛煉互相交替。這樣,可以提高大腦的記憶力。
18
分布記憶法
在理科和數學的學習中,也可移植豐子恺先生的“二十二遍讀書法”:第一天讀十遍,第二天、第三天各讀五遍,第四天讀二遍。這樣的記憶,大腦細胞可以得到适當的休息,用腦比較省力,既符合加強首次感知的規律,又符合記憶保持的規律。反之,老是重複同一材料,單調的刺激,容易引起大腦皮層的保護性抑制,使記憶力衰降。
19
循環記憶法
即是将要記憶的材料分成若幹組,當記後幾組時,要有規律地複習記憶前面的幾組。也可用此方法于自學讀書。當閱讀一本數學書時,先讀第一章并記憶其中的一些主要結果;在讀第二章以後的書時,應分别簡要地複讀前一章書中的主要結果;讀一章書也一樣,應在讀後節内容之前,複讀一下以前各節的主要内容。這樣的循環記憶,實則是在強化識記的痕迹,利于記憶的保持,自然可收到深刻記憶的效果。
适合文科的16種高效背誦法
有話要說...